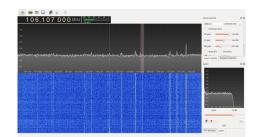
Free and Open Source Software Defined Radio

Where Free and Open Source Software Meets Open Hardware

Alick Zhao alick@fedoraproject.org



Fedora Project

Sep 20, 2014

FM Radio

- FM receiver
 - gqrx: http://gqrx.dk/
- FM transmitter

Record and Play

- GPS
- Remote control:
 - toy car
 - electric gate

OpenBTS

- GSM/GPRS base station (BS)
 - Phone calls
 - Short messages
 - Internet data service
- Run on laptop PCs
- UMTS: coming soon

Let's Define Software Defined Radio!

- Traditional (Hardware defined) radio:
 - Functions: embedded (coupled) in hardware
 - Inflexible, hard to update, long development cycle
- Software defined radio (SDR)
 - Hardware: universal, general purpose
 - Functions: programmable by software (on PC/DSP/FPGA)
 - Flexible, rapid development

• Why?

- Free: as in freedom, and free beer
- Linus Law: give enough eyeballs, all bugs are shallow.
- Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes

- Why?
 - Free: as in freedom, and free beer
 - Linus Law: give enough eyeballs, all bugs are shallow
 - Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes

- Why?
 - Free: as in freedom, and free beer
 - Linus Law: give enough eyeballs, all bugs are shallow.
 - Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes!

- Why?
 - Free: as in freedom, and free beer
 - Linus Law: give enough eyeballs, all bugs are shallow.
 - Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes!

- Why?
 - Free: as in freedom, and free beer
 - Linus Law: give enough eyeballs, all bugs are shallow.
 - Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes!

- Why?
 - Free: as in freedom, and free beer
 - Linus Law: give enough eyeballs, all bugs are shallow.
 - Community: friendship, knowledge sharing, collaboration
- Are there?
 - Yes!

GNU Radio

- SDR software development platform
 - Many signal processing blocks
 - FOSS: GPL, © FSF
 - GUI development support: GRC
 - C++, Python

USRP

- Universl Software Radio Peripheral
 - Ettus Research, NI
 - High performance
 - Not that cheap

*RF

bladeRF

- Nuand:
 - http://www.nuand.com/
- USB 3.0
- 300 MHz 3.8 GHz
- Headless mode

HackRF

- Michael Ossmann
- Funded on Kickstarter
- Cheap
- Fully open source: layout

More Use Cases

- Test equipment
 - Spectrum analyzer
 - Signal generator
- Airplane
 - ADS-B
 - ACARS
- Ship
 - AIS
- Amateur Radio

LTE

- Cell scanner
- LTE receiver: gr-lte
- LTE eNodeB (BS)
 - openLTE
 - libLTE
 - OpenAirInterface

Detected Cells information list

	Duplex mode	Cell ID	Antenna ports	Frequency offset	Received power	CP type	Num. RB	PHICH duration	PHICH resource
1860MHz	FDD	142	2	-41.8006kHz	-0.90925	Normal	100	Normal	1
1860MHz	FDD	86	2	-41.7744kHz	-1.1267	Normal	100	Normal	1
1890MHz	TDD	253	2	-41.116kHz	11.1699	Normal	100	Normal	1/2
2565MHz	TDD	29	2	-36.1428kHz	34.8551	Normal	100	Normal	1
2565MHz	TDD	28	2	-86.9578kHz	33.9531	Normal	100	Normal	1
2565MHz	TDD	27	2	-86.9563kHz	31.5544	Normal	100	Normal	1
2585MHz	TDD	68	2	-87.975kHz	35,9489	Normal	100	Normal	1/6
2585MHz	TDD	66	2	-88.2294kHz	28.9758	Normal	100	Normal	1/6
2585MHz	TDD	67	2	-94.2675kHz	31.1485	Normal	100	Normal	1/6
2604.9MHz	TDD	355	2	4.905kHz	34.416	Normal	100	Normal	1
2645MHz	TDD	22	2	-89.3233kHz	29.8605	Normal	100	Normal	1
2645MHz	TDD	21	2	-89.3376kHz	27,2821	Normal	100	Normal	1

Note: Frequency offset is dongle specific.

Note: Received Power only has relative meaning.

WiFi

- gr-ieee802-11
 - An IEEE 802.11 a/g/p transceiver for GNU Radio
 - https://github.com/bastibl/gr-ieee802-11

Summary

- Radio frequency: a new dimension for hacking
- SDR: flexibility, progammability
- FOSS SDR: hacking in free and open source way

Happy hacking!